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The LUISA Model and Its Application to the UK2070 Futures Modelling Study 

This model appendix is organized as follows. Section A1 introduces the formal structure of the 
LUISA2.3 model. Section A2 discusses the model solving algorithm in a step-by-step manner. 
Section A3 summarizes the zoning system in the model. Lists of model variables and behavioural 
parameters are provided in Section A4.  Further technical details are available from the Martin 
Centre team at University of Cambridge. 
A1 Structure of the LUISA2.02 Model 
Suppose that the city region is divided into ℑ core zones plus ℘ peripheral zones. Core zones 
represent the core study area where detailed policy analyses are conducted with relatively fine 
spatial granularity; while the peripheral zones represent the wider region outside the core study 
area which exchanges production factors (e.g. labour) and trades goods & services with the core 
zones. ℕ = ℑ + ℘ thus denotes all modelled zones. Each of the model zones has 𝑟 = 1, … , ℛ 
basic industries and 𝑓 = 1, … , 𝐹 consumer types. Table 21 summarizes the model segmentations 
in the model.  
TABLE 21  SEGMENTATIONS IN THE MODEL 

Industry types Consumer types Residential 
floorspace 

types 

Commercial 
floorspace 

types 

Core zones 𝑟 = 1,… ,ℛ 𝑓 = 1,… , 𝐹 𝑚 = 1,… , ℵ1 𝑘 = 1,… , ℵ2 

Peripheral 
zones 

𝑟 = 1,… ,ℛ 𝑓 = 1,… , 𝐹 𝑚 = 1,… , ℵ1 𝑘 = 1,… , ℵ2 

We introduce the following model components in turn: producers, final consumers, location 
choices, stock constraints and equilibrium conditions. 

A1.1 Producers 
The producers are represented by a set of production functions that define how they use capital, 
labour, floorspace and intermediate inputs (raw materials and services). A nested Cobb-Douglas 
CES (CD-CES) function has been broadly accepted as a standard for this purpose in spatial 
general equilibrium analyses since Krugman (1991) and Fujita et al. (1999). We follow Anas and 
Liu (2007) and Jin et al. (2013), and define the production function as a variant of the CD-CES 
specification. 

𝑋𝑟𝑗 = 𝐸𝑟𝑗𝐴𝑟𝑗(𝐾𝑟)
𝜈𝑟 (∑ 𝜅𝑟𝑓𝑗𝐿𝑓𝑗

𝜃𝑟

𝑓
)

𝛿𝑟
𝜃𝑟

(∑ 𝜒𝑟𝑘𝑗𝐵𝑘𝑗
𝜁𝑟

𝑘
)

𝜇𝑟
𝜁𝑟

∏ (𝑌𝑟𝑠𝑗)
𝛾𝑟𝑠

𝑠

(1) 

where 𝑋𝑟𝑗 is the production output of industry 𝑟 in zone 𝑗; 𝐾𝑟, 𝐿𝑓𝑗, 𝐵𝑘𝑗 and 𝑌𝑟𝑠𝑗 are the capital, 

labour, business floorspace and intermediate input, respectively; 𝜈𝑟, 𝛿𝑟, 𝜇𝑟 and 𝛾𝑟𝑠 are cost 
share parameters for the respective input group. This function is Cobb-Douglas and is constant 
returns to scale by 𝜈𝑟 + 𝛿𝑟 + 𝜇𝑟 + ∑ 𝛾𝑟𝑠𝑠 = 1. The elasticity of substitution between any two
labour and building floorspace varieties is 1 (1 − 𝜃𝑟)⁄  and 1 (1 − 𝜁𝑟)⁄ , respectively. 𝜅𝑟𝑓𝑗, 𝜒𝑟𝑘𝑗 ≥ 0

are input-specific constants for labour and business floorspace varieties, respectively. These 
constants allow us to specify input-specific preference within each input bundle. 𝐴𝑟𝑗 is a 

function of the economic mass for industry 𝑟 in zone 𝑗 that represents Hicksian-neutral Total 
Factor Productivity (TFP) effects resulting from learning and transfer of tacit knowledge 
(Graham & Kim, 2008; Rice, Venables, & Patacchini, 2006), which is an important component of 
urban agglomeration effects. 𝐸𝑟𝑗 is a constant scalar representing any additional zonal effects on 

total factor productivity. We define 𝐴𝑟𝑗 = 𝐴𝑟𝑗(𝑀𝑗/𝑀𝑗)
𝜋, where 𝐴𝑟𝑗 is a constant representing the

baseline agglomeration effects, 𝑀𝑗 is a function of the economic mass of zone 𝑗, 𝑀𝑗 is a constant 

representing the baseline economic mass in 𝑗; 𝜋 is a scale parameter. The function of economic 
mass builds on the concept of effective density (Graham, Gibbons, & Martin, 2009). 

𝑀𝑗 = ∑ ∑
𝐿𝑓𝑖

𝜒𝑓𝑖𝑗𝑖𝑓 (2) 

where 𝐿𝑓𝑖 is the total size of labour type 𝑓 in zone 𝑖 (including zone 𝑗) that is relevant to 

production zone 𝑗, and 𝜒𝑓𝑖𝑗 is the travel time from location 𝑖 to 𝑗 for labour type 𝑓.  
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We assume that each firm minimizes the cost subject to the production demand and the price of 
each input variety. The conditional input demand (given target output 𝑋𝑟𝑗) of each input factor 

can be derived as follows: 

𝐾𝑟 =
1

𝜌
𝜈𝑟𝑝𝑟𝑗𝑋𝑟𝑗 (3) 

𝐿𝑟𝑓𝑗 =
𝜅

𝑟𝑓𝑗

1
1−𝜃𝑟𝑤

𝑓𝑗

1
𝜃𝑟−1

∑ 𝜅
𝑟𝑠𝑗

1
1−𝜃𝑟𝑤

𝑠𝑗

𝜃𝑓

𝜃𝑟−1
𝑠

𝛿𝑟𝑝𝑟𝑗𝑋𝑟𝑗 (4) 

𝐵𝑟𝑘𝑗 =
𝜒

𝑟𝑘𝑗

1
1−𝜁𝑟𝑅

𝑘𝑗

1
𝜁𝑟−1

∑ 𝜒
𝑟𝑠𝑗

1
1−𝜁𝑟𝑅

𝑠𝑗

𝜁𝑟
𝜁𝑟−1

𝑠

𝜇𝑟𝑝𝑟𝑗𝑋𝑟𝑗 (5) 

𝑌𝑟𝑠𝑗 =
𝛾𝑟𝑠𝑝𝑟𝑗𝑋𝑟𝑗

𝑝𝑟𝑠|𝑗
∗ (6) 

where 𝑝𝑟𝑗 is the unit production price of industry 𝑟 in zone 𝑗; 𝜌 is the exogenous price of 

business capital (i.e. the real interest rate); 𝑤𝑓𝑗 is the hourly wage of labour type 𝑓; 𝑅𝑘𝑗 is the 

average rent for business floorspace type 𝑘; and 𝑝𝑟𝑠|𝑗
∗  is the average delivered price of

intermediate input type 𝑠 for producing product type 𝑟 in zone 𝑗. 
The minimized production price can then be calculated by substituting the above conditional 
demands into the production function. As zero profit is assumed at any level of output, the 
minimized price equals the average and the marginal cost, which takes the form: 

𝑝𝑟𝑗 =

𝜌𝜈𝑟 (∑ 𝜅
𝑟𝑓𝑗

1
1−𝜃𝑟𝑤

𝑓𝑗

𝜃𝑟
𝜃𝑟−1

𝑓 )

𝛿𝑟𝜃𝑟−1
𝜃𝑟

(∑ 𝜒
𝑟𝑘𝑗

1
1−𝜁𝑟𝑅

𝑘𝑗

𝜁𝑟
𝜁𝑟−1

𝑘 )

𝜇𝑟𝜁𝑟−1
𝜁𝑟

∏ 𝑝𝑟𝑠|𝑗
∗ 𝛾𝑟𝑠

𝑚

𝐸𝑟𝑗𝐴𝑗𝜈𝑟
𝜈𝑟𝛿𝑟

𝛿𝑟𝜇𝑟
𝜇𝑟 ∏ 𝛾𝑟𝑠

𝛾𝑟𝑠
𝑠

(7) 

A1.2 Final Consumers 
Final consumers are categorized into 𝑓 = 1,… , 𝐹 types according to their employment status and 
socio-economic level. 𝐻𝑓 is the exogenous number of consumers in group 𝑓. Consumers in socio-

economic group 𝑓 receive both wage and nonwage income, except group 𝑓 = 𝐹 denoting the 
non-employed consumers who do not have wage income but receive nonwage income through 
social welfare transfer. The wage income is modelled endogenously subject to equilibrium 
conditions, while the nonwage income is subject to the a priori welfare transfer scheme. 
Each consumer makes a set of discrete and continuous choices. For discrete choices, the 
employed residents decide where to work and where to live jointly from 𝑗 = 1,… ,ℕ employment 
zones and 𝑖 = 1,… ,ℕ residence zones; the non-employed residents choose their residence 
location from 𝑖 = 1,… ,ℕ residence zones. Both the employed and non-employed consumers 
choose where to source goods & services from 𝑧 = 1,… ,ℕ production zones. The remaining 
choices entail continues variables and are conditional on the above discrete location choices. 
Consumers then decide on: 1) the annual consumption of each goods & services variety; 2) the 
quantity of type 𝑚 housing floorspace to rent; 3) the use of time between work and leisure in 
the case of employed consumers. All consumers are assumed to maximize their utility from the 
mixed discrete-continuous choice. 

Following the random utility framework (McFadden, 1973), the utility of consumer type 𝑓 
living in zone 𝑖 and working in zone 𝑗 takes the form 𝑈𝑓𝑖𝑗

∗ = 𝑈𝑓𝑖𝑗 + 𝑒𝑓𝑖𝑗 where 𝑈𝑓𝑖𝑗 is the

observable quantity-based utility and 𝑒𝑓𝑖𝑗 is the error term which measures the unobservable 

utility variance among consumers. The observable utility 𝑈𝑓𝑖𝑗 is given by: 
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𝑈𝑓𝑖𝑗 = 𝛼𝑓 ln (∑ ∑ 𝜉𝑟𝑓𝑧(𝑍𝑟𝑧|𝑓𝑖𝑗)
𝜂𝑓

𝑧𝑟
)

1
𝜂𝑓

+ 𝛽𝑓 ln (∑ 𝚤𝑚𝑓𝑖
𝑚

(𝑏𝑚|𝑓𝑖𝑗)
𝜎𝑓

)

1
𝜎𝑓

+ 𝛾𝑓 ln 𝑙𝑓𝑖𝑗 (8) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑏𝑢𝑑𝑔𝑒𝑡 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡: ∑ (𝑝𝑟𝑧 + 𝑐𝑓2𝑔𝑓𝑖𝑧)𝑍𝑟𝑧|𝑓𝑖𝑗
𝑟,𝑧

+ ∑ 𝑟𝑚𝑖𝑏𝑚|𝑓𝑖𝑗
𝑚

+ 𝛥𝑓2𝐷𝑔𝑓𝑖𝑗

= 𝛥𝑓𝑤𝑓𝑗 (𝑁 − 2𝐷𝐺𝑓𝑖𝑗 − ∑ 𝑐𝑓𝑍𝑟𝑧|𝑓𝑖𝑗2𝐺𝑓𝑖𝑧
𝑟,𝑧

− 𝑙𝑓𝑖𝑗) + ℳ𝑓𝑖 
 

𝑎𝑛𝑑  𝑡𝑖𝑚𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡:    𝑁 − ∑ 𝑐𝑓𝑍𝑟𝑧|𝑓𝑖𝑗2𝐺𝑓𝑖𝑧
𝑟,𝑧

− 𝛥𝑓(𝑙𝑓𝑖𝑗 + 2𝐷𝐺𝑓𝑖𝑗) ≥ 0  

In equation (8), we assume Cobb-Douglas preference between goods & services 𝑍𝑟𝑧|𝑓𝑖𝑗, housing 

𝑏𝑚|𝑓𝑖𝑗 and leisure time 𝑙𝑓𝑖𝑗. 𝛼𝑓 + 𝛽𝑓 + 𝛾𝑓 = 1 are the expenditure coefficients for each 

consumption bundle. The varieties of goods & services and housing are assumed to be imperfect 
substitutes (Dixit & Stiglitz, 1977), and the elasticity of substitution is governed by 𝜂𝑓 and 𝜎𝑓 for 

goods & services and housing, respectively. 𝜉𝑟𝑓𝑧, 𝚤𝑚𝑓𝑖 > 0 are the input-specific constants 

measuring the inherent attractiveness of the goods & services, and housing varieties for 
consumers type 𝑓, which is calibrated empirically. 
For the budget constraint in equation (8), the right-hand side of the function is the total income 
and the left-hand side is the total expenditure. Specifically, 𝑝𝑟𝑧 is the mill price for goods & 
services type 𝑟 produced in zone 𝑧; 𝑔𝑓𝑖𝑧 and 𝐺𝑓𝑖𝑧 is the expected one-way monetary cost and 

travel time from 𝑖 to 𝑧 for customers type 𝑓, respectively2; 𝑐𝑓 is an exogenous coefficient that 

measures the cost for delivering a unit of goods & services as percentage of the normal trip cost. 
𝑟𝑚𝑖 is the housing rent of type 𝑚 in zone 𝑖; 𝑤𝑓𝑗 is the hourly wage rate for labour type 𝑓 working 

in zone 𝑗. 𝛥𝑓 is the employment status of the consumer type 𝑓. For all employed consumers 𝛥𝑓 =

1; otherwise 𝛥𝑓 = 0. ℳ𝑓𝑖 is the nonwage income of consumer type 𝑓 in zone 𝑖. It consists of 

normal investment returns on real estate in the city region (endogenous in the model) as well as 
the individual share of social welfare transfer and amenity gains (subject to a priori scheme). As 
for the time constraint, 𝐷 is the exogenous number of working days per annum; 𝑁 = 24𝐷 is the 
exogenous total annual time endowment. For the non-employed consumers (𝛥𝑓 = 0), the model 

only accounts for the time for shopping, as they do not commute and have zero value of time for 
leisure time. 
We can rewrite the budget constraint in equation (8) to consider the value of time for shopping 
travel as a part of the delivered price. The new constraint function is equivalent to equation (8). 

∑ 𝑝𝑟𝑧|𝑓𝑖𝑗
∗ 𝑍𝑟𝑧|𝑓𝑖𝑗

𝑟,𝑧
+ ∑ 𝑟𝑚𝑖𝑏𝑚|𝑓𝑖

𝑚
+ 𝛥𝑓2𝐷𝑔𝑖𝑗 (9) 

= 𝛥𝑓𝑤𝑓𝑗(𝑁 − 2𝐷𝐺𝑖𝑗 − 𝑙𝑓𝑖𝑗) + ℳ𝑓𝑖  

where 𝑝𝑟𝑧|𝑓𝑖𝑗
∗  is the full delivered price of a unit of goods & services type 𝑟 produced in zone 𝑧 

purchased by consumer type 𝑓 living in zone 𝑖 and working in zone 𝑗. We use the subscript 𝑧 to 
denote the production location of goods & services and 𝑗 as the employment location for 
employed workers. The full delivered price for final consumers 𝑝𝑟𝑧|𝑓𝑖𝑗

∗  is given by: 

𝑝𝑟𝑧|𝑓𝑖𝑗
∗ = 𝑝𝑟𝑧 + 𝑐𝑓2(𝑔𝑖𝑧 + 𝛥𝑓𝐺𝑖𝑧𝑤𝑓𝑗) (10) 

Accordingly, the full disposable income of the consumer type (𝑓𝑖𝑗) net of commuting costs is 
given by: 

Ω𝑓𝑖𝑗 = 𝛥𝑓𝑤𝑓𝑗(𝑁 − 2𝐷𝐺𝑖𝑗 − 𝑙𝑓𝑖𝑗) − 𝛥𝑓2𝐷𝑔𝑖𝑗 + ℳ𝑓𝑖 (11) 

Under the above budget and time constraint, we can then derive the Marshallian demand for 
goods & services, housing and leisure time in Eq. 3.12, Eq. 3.13 and Eq. 3.14, respectively. 

 
2 The monetary cost and travel time is composite over all available travel modes. For the moment, we do not consider 
the time-of-day and purpose variations in travel time and cost. 
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 �̅�𝑟|𝑓𝑖𝑗 =
𝜉𝑟𝑓𝑧

1
1−𝜂𝑓�̅�𝑟|𝑓𝑖𝑗

1
𝜂𝑓−1

∑ 𝜉𝑟𝑓𝑧

1
1−𝜂𝑓�̅�𝑠|𝑓𝑖𝑗

𝜂𝑓

𝜂𝑓−1
𝑠

𝛼𝑓Ω𝑓𝑖𝑗 (12) 

𝑏𝑚|𝑓𝑖𝑗 =
𝚤
𝑚𝑓𝑖

1
1−𝜎𝑓𝑟

𝑚𝑖

1
𝜎𝑓−1

∑ 𝚤
𝑠𝑖

1
1−𝜎𝑓𝑟

𝑠𝑖

𝜎𝑓

𝜎𝑓−1
𝑠

𝛽𝑓𝛺𝑓𝑖𝑗 (13) 

𝑙𝑓𝑖𝑗 =
𝛾𝑓𝛺𝑓𝑖𝑗

𝑤𝑓𝑗
 (14) 

where �̅�𝑟|𝑓𝑖𝑗 is the aggregate demand for product type 𝑟 for consumer type (𝑓𝑖𝑗); �̅�𝑟|𝑓𝑖𝑗 is the 

probability-weighted average price of product type 𝑟 faced by consumer type (𝑓𝑖𝑗). The 

formulation of �̅�𝑟|𝑓𝑖𝑗 and �̅�𝑟|𝑓𝑖𝑗 and the associated discrete-choice probability function will be 

introduced shortly. 
In addition to the Marshallian utility function (maximizing utility subject to budget constraints), 
which is used in base-year model calibration, the model employs the Hicksian utility function in 
forecasts. The Hicksian utility function differs from the Marshallian utility function in that it 
minimizes the expenditure given fixed utility. The use of Hicksian utility function in forecast 
mode implies that consumers are assumed to maintain, if not increase, their base-year utility 
level in future years by altering their locational and consumption choices. Under the same 
Nested-CES configuration and parameterization, the Marshallian and Hicksian utility functions 
are consistent in base-year model calibration, in the sense that the derived Marshallian demands 
(given observed budget constraint) are identical to the Hicksian demands (given the Marshallian 
utility). In forecast mode, the Hicksian utility function will replace the Marshallian utility 
function. The implication is that consumers will have to raise the income if the cost of living 
(i.e. prices of goods & services and housing rents) goes up, in order to maintain the same utility 
level. The need for increasing income will then be represented by an upward pressure on labour 
wage. In case the cost of living goes down (e.g. abundance of housing supply), the model 
assumes that the local wage level would not decrease subject to global price adjustment. 
Nonetheless the resulting extra utility gain will be competed out in spatial equilibrium as more 
residents move into the area, which in turn drives up the cost of living. For the Hicksian utility 
function, the minimized expenditure given the utility 𝑈𝑓𝑖𝑗 is defined as: 

Ω𝑓𝑖𝑗
𝐻𝑖𝑐𝑘𝑠𝑖𝑎𝑛 = 𝛼

𝑓

−𝛼𝑓𝛽
𝑓

−𝛽𝑓𝛾
𝑓

−𝛾𝑓
[(∑ ∑ 𝜉𝑟𝑓𝑧

1
1−𝜂𝑓�̅�𝑟|𝑓𝑖𝑗

𝜂𝑓

𝜂𝑓−1

𝑧𝑟
)

𝜂𝑓−1

𝜂𝑓

]

𝛼𝑓

 

[
 
 
 

(∑ 𝚤
𝑚𝑓𝑖

1
1−𝜎𝑓𝑟

𝑚𝑖

𝜎𝑓

𝜎𝑓−1

𝑚
)

𝜎𝑓−1

𝜎𝑓

]
 
 
 
𝛽𝑓

(𝑤𝑓𝑗)
𝛾𝑓𝑈𝑓𝑖𝑗 

(15) 

The total annual labour working time 𝑁𝑓𝑖𝑗 for the employed consumer type (𝑓𝑖𝑗) is thus 

determined by subtracting the total travel time for commuting and shopping, and the annual 
leisure time from the annual time endowment 𝑁. 

𝑁𝑓𝑖𝑗 = 𝑁 − 2𝐷𝐺𝑖𝑗 − ∑ 𝑐𝑓𝑍𝑟𝑧|𝑓𝑖𝑗2𝐺𝑖𝑧
𝑟,𝑧

− 𝑙𝑓𝑖𝑗 ≥ 0 (16) 

The next step is to evaluate the direct utility function (8) to get the price-based indirect utility 

function �̃�𝑓𝑖𝑗, which is given by: 

�̃�𝑓𝑖𝑗 = lnΩ𝑓𝑖𝑗 −𝛼𝑓

𝜂𝑓 − 1

𝜂𝑓
ln (∑ ∑ 𝜉𝑟𝑓𝑧

1
1−𝜂𝑓�̅�𝑟|𝑓𝑖𝑗

𝜂𝑓

𝜂𝑓−1

𝑧𝑟
)

− 𝛽𝑓

𝜎𝑓 − 1

𝜎𝑓
ln (∑ 𝚤

𝑚𝑓𝑖

1
1−𝜎𝑓𝑟

𝑚𝑖

𝜎𝑓

𝜎𝑓−1

𝑚
)−𝛾𝑓 ln𝑤𝑓𝑗 

(17) 

Note that the quantity-based and the price-based utility functions are mathematically 
equivalent in static equilibrium. However, for the purpose of welfare evaluation over time, 
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particularly in long-term forecast that involves macroeconomic changes (e.g. price-level changes 
due to growth, inflation or deflation), the quantity-based direct utility function offers a more 
intuitive and straightforward measure than the price-based counterpart. Therefore, we use the 
price-based utility in static equilibria and the quantity-based utility for welfare analysis. 
A1.3 Location Choices 
The location choices in the model include: 1) sourcing goods & services for final consumers; 2) 
the employment-residence choice (or residence location choice if employment is exogenous) for 
the employed residents. Both location choices are modelled in the spatial equilibrium 
framework. Another important aspect of location choice modelling is the articulation of travel 
disutility. We summarize the measure of travel disutility in the model by the end of this section. 
A1.3.1 Sourcing goods and services 
In the model, consumers do not only decide the quantity of each product to purchase, but also 
where to source them. The former decision is based on average delivered price of each product 
thus is continuous in nature; while the latter choice is discrete involving limited number of 
location alternatives. We represent this mixed discrete-continuous choice problem by combining 
two different choice models. For the continuous choice on quantities, a nested CES function is 
applied to consider the substitution effects within the consumption bundle. For the discrete 
location choice, the sourcing pattern is modelled with a multinomial logit probabilistic model. 
The probability of obtaining product type 𝑟 from zone 𝑧 to consumer type 𝑓 living in zone 𝑖 (and 
working in zone 𝑗, if employed) is given by: 

𝑃𝑟𝑧|𝑓𝑖𝑗 =
𝑆𝑧exp (−𝜆𝑓|𝑟(𝑝𝑟𝑧 + 𝑐𝑓𝜒𝑓𝑖𝑧 + 𝜓𝑟𝑖𝑧 − 𝐸𝑟𝑓𝑧))

∑ 𝑆𝑛exp (−𝜆𝑓|𝑟(𝑝𝑟𝑛 + 𝑐𝑓𝜒𝑓𝑖𝑛 + 𝜓𝑟𝑖𝑛−𝐸𝑟𝑓𝑛))𝑛
 (18) 

where 𝑆𝑧 is a size term that corrects for the bias introduced by the uneven sizes of zones in the 
model (Ben-Akiva & Lerman, 1985); 𝜆𝑓|𝑟 is the dispersion parameter. 𝑐𝑓 is a coefficient 

measuring the cost for delivering a unit of goods & services as percentage of normal trip cost; 
𝜒𝑓𝑖𝑧 is a travel disutility function; 𝜓𝑟𝑖𝑧 are observable non-monetary barriers for trading between 

zone 𝑖 and zone 𝑧; 𝐸𝑟𝑓𝑧 is the residual attractiveness term which is calibrated empirically. In the 

model, consumers will shop to all potential production zones, rather than the zone with the 
cheapest delivered price only3. A similar probability function can be applied to model the 
sourcing of intermediate inputs for producers. 
With the above probability, we can derive the weighted average price of product type 𝑟 faced by 
consumer type (𝑓𝑖𝑗). Note that this weighted average price considers the consumption inputs 
from all possible production locations, thus the dimension is [𝑟]. 

�̅�𝑟|𝑓𝑖𝑗 = ∑ 𝑝𝑟𝑧|𝑓𝑖𝑗
∗ 𝑃𝑟𝑧|𝑓𝑖𝑗

𝑧
 (19) 

where 𝑝𝑟𝑧|𝑓𝑖𝑗
∗  is the full delivered price including the value of time for travel. The purpose of 

deriving �̅�𝑟|𝑓𝑖𝑗 is to link the discrete location choice with the continuous choice of consumption 

quantities. For residents living in zone 𝑖, they first choose how much to consume for each 

product type (�̅�𝑟|𝑓𝑖𝑗), regardless of the their production locations. This continuous choice is 

made based on the weighted average price �̅�𝑟|𝑓𝑖𝑗 through CES functions. The discrete-choice 

probability in Eq. 3.17 then distributes the aggregate demand �̅�𝑟|𝑓𝑖𝑗 to each production location 

𝑧. This distribution process is given by: 

𝑍𝑟𝑧|𝑓𝑖𝑗 = 𝑃𝑟𝑧|𝑓𝑖𝑗�̅�𝑟|𝑓𝑖𝑗 (20) 

This function is used to derive the total production demand for product type 𝑟 in zone 𝑧. 
A1.3.2 Employment/residence location choice 
In the model, we differentiate the location choice of employed residents and the non-employed. 
For employed residents we assume that they respond quickly to the utility changes and are 
mobile in terms of employment-residence relocation in static equilibria. By contrast, the 
relocation of non-employed residents is inertia-prone, i.e. there may be a lag of many years 
between a utility change and household relocation. We thus deal the relocation of non-employed 
households outside the equilibrium framework through recursive dynamic model or model 
assumptions. This section first introduces the discrete choice model for employment-residence 

 
3 By “shop” we refer to any non-work trip that involves the purchase of goods and services. We ignore trip chains and 
travels that do not originate from home.  
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joint choice. The residence location choice model as an abridged version the former model will 
be discussed afterwards. 
For the employment-residence choice of employed residents, a multinomial logit model is 
developed. The probability of consumer 𝑓 working in zone 𝑗 choosing to live in zone 𝑖 is defined 
as: 

𝑃𝑓𝑖𝑗 =
𝑆𝑖𝑗exp (𝜆𝑓𝜐𝑓𝑖𝑗)

∑ 𝑆𝑚𝑛exp (𝜆𝑓𝐼𝜐𝑓𝑚𝑛)𝑚,𝑛

 (21) 

where 

𝜐𝑓𝑖𝑗 = �̃�𝑓𝑖𝑗 − 𝑑𝑓𝑖𝑗 + 𝜓𝑓𝑖𝑗 + 𝐸𝑓𝑖𝑗 + 𝑒𝑓𝑖𝑗 (22) 

𝑆𝑖𝑗 is the a size term that addresses the size of residence/employment opportunities in zone 𝑖/𝑗; 

𝜆𝑓|𝐼 is the dispersion parameter; �̃�𝑓𝑖𝑗 is the consumption utility of consumer 𝑓 living in zone 𝑖 and 

working in zone 𝑗; 𝑑𝑓𝑖𝑗 is the travel disutility of travelling from zone 𝑖 to 𝑗; 𝐸𝑓𝑖𝑗 is the residual 

attractiveness of location pair (𝑖, 𝑗), and 𝑒𝑓𝑖𝑗 is the unobserved error term. 

For the residence choice of employed residents, the probability of consumer 𝑓 choosing to live in 
zone 𝑖, given the employment location 𝑗, is defined as: 

𝑃𝑓𝑖|𝑗 =
𝑆𝑖exp (𝜆𝑓|𝐼𝜐𝑓𝑖|𝑗)

∑ 𝑆𝑚exp (𝜆𝑓|𝐼𝜐𝑓𝑚|𝑗)𝑚

 (23) 

where 

𝜐𝑓𝑖|𝑗 = �̃�𝑓𝑖|𝑗 − 𝑑𝑓𝑖|𝑗 + 𝜓𝑓𝑖|𝑗 + 𝐸𝑓𝑖|𝑗 + 𝑒𝑓𝑖|𝑗 (24) 

𝜐𝑓𝑖|𝑗 is the residence location utility of zone 𝑖 for resident type 𝑓, given the chosen workplace 𝑗; 

𝜆𝑓|𝐼 is the dispersion parameter. The other variables follow the same definitions as in function 

𝜐𝑓𝑖𝑗, except that the employment location 𝑗 is given. 

A1.3.3 Travel disutility 
In the model, the 𝜒𝑓𝑖𝑗 function is introduced to represent the attributes of travel for traveller 

type 𝑓 from 𝑖 to 𝑗. We differentiate the 𝜒𝑓𝑖𝑗 function for different uses throughout the model. In 

this section, we summarize the use of the 𝜒𝑓𝑖𝑗 function. For measuring the economic mass (as in 

Eq. 2), we define 𝜒𝑓𝑖𝑗 = 2𝐺𝑓𝑖𝑧, which is the round-trip travel time (in hourly term) between zone 

𝑖 and 𝑗 for traveller type 𝑓. 
For sourcing goods & services (as in Eq. 18), we define 𝜒𝑓𝑖𝑧 = 2(𝑔𝑓𝑖𝑧 𝜍𝑓�̅�𝑓𝑖⁄ + 𝐺𝑓𝑖𝑧), where �̅�𝑓𝑖 is 

the average hourly wage of type-𝑓 employed residents living in zone 𝑖4, and 𝜍𝑓 ∈ (0,1] is a decay 

coefficient, implying that the shopping trip being partly voluntary thus its value of time is not 
fully valued by the traveller. The front multiplier transforms the one-way cost into round-trip 
cost (de Dios OrtÃozar & Willumsen, 2011). The above formulation adopts the time unit (hour), 
and considers both the travel time and the monetary cost. The monetary cost is transformed 
into time unit by dividing it by the value of time 𝜍𝑓�̅�𝑓𝑖. Note that this time-based travel disutility 

is only used for modelling location choices. The actual transport costs, including the value of 
time, are measured in monetary unit in the equilibrating process. 
For the employment-residence location choice, it is important to consider the realistic 
commuting patterns within a large city region. City regions with reasonably self-contained 
commuting catchment today tend to have a radius of 50km or more. At this metropolitan scale, 
extensive analyses of travel choices data show that a 𝑑𝑖𝑗 function (as in Eq. 22) that is linear to 

travel costs and times will have great difficulties in representing realistic demand elasticity 
throughout (Jin et al., 2013); a non-linear transformation of utilities is required (Gaudry & 
Laferriére, 1989). Fox et al (2009) devise a log-linear transformation that is a close equivalent to 
the Box-Cox function whilst being easier to calibrate. This function is given by: 

𝑑𝑓𝑖𝑗 = 𝑎𝑓|𝑑𝜒𝑓𝑖𝑗 + (1 − 𝑎𝑓|𝑑) ln 𝜒𝑓𝑖𝑗 − 𝑎𝑓|𝑑 (25) 

where 𝜒𝑓𝑖𝑗 = 2𝐷𝐺𝑓𝑖𝑧, i.e. the annual total commuting time between zone 𝑖 and 𝑗 for labour type 

𝑓, and 𝑎𝑓|𝑑 is a log-linear parameter. The reason why we do not account for the monetary cost is 

 
4 To distinguish �̅�𝑓𝑖  and 𝑤𝑓𝑗 , the latter is the hourly wage of labour type 𝑓 at production zone 𝑗, while the former  is 

the average wage for labour type-𝑓 living in residence zone 𝑖, weighted by the modelled labour distribution to all 
employment locations. 
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that the monetary cost is already accounted for in the consumption utility function (see the 
budget constraint in Eq. 8). To avoid double counting, we thus only consider the travel time in 
the 𝜒𝑓𝑖𝑗 function. 

To demonstrate the non-linear feature of the above function, we plot the log-linear travel 
disutility versus the linear counterpart in Error! Reference source not found.. It shows that the 
modelled elasticity of the log-linear function varies for different distance ranges. Specifically, 
the elasticity of disutility with regard to distance is higher for short-distance range (approx. 0-15 
km), and becomes lower for long-distance range (approx. > 15 km). 
A1.4 Stock Constraints 
We define stock constraints to cover land/floorspace and transport infrastructure which may 
evolve or “churn” slowly. In the model, the stock constraints include: 1) the zonal supply of 

housing floorspace varieties (�̂�𝑚𝑖) and business floorspace varieties (�̂�𝑘𝑖); 2) the expected 
transport monetary cost (𝑔𝑓𝑖𝑗) and travel time (𝐺𝑓𝑖𝑗) for consumer type 𝑓; 3) the zonal number 

of non-employed residents (𝐻𝐹). 
In the model, such stock constraints remain exogenous for any static period and will be updated 
periodically in a non-equilibrium manner. The underlying assumption is that land/floorspace and 
transport infrastructure respond to demand slowly and indivisibly, subject to regulation, 
planning, construction, commission and decommission (Jin et al., 2013). User-defined supply 
scenarios are likely to be the most appropriate in order to reflect policy targets and background 
changes. As for the relocation of non-employed residents, it is assumed that there is a time lag 
between a utility change and household relocation. 
A1.5 Equilibrium Conditions 
The general equilibrium structure of the model requires three sets of equilibrium conditions to 
be satisfied simultaneously, conditional on the transport conditions 𝒈 and 𝑮. 

1) All consumers maximize utility subject to budget and time constraint, or minimise 
expenditure subject to given utility target. 

2) All producers minimize cost subject to supply constraint of input factors and technology. 
Producers are competitive and operate under constant returns to scale. The minimized 
production price equals the average and marginal cost, implying zero economic profit. 

3) All markets clear with zero excess demands. This applies to: a) the residential and 
business floorspace markets; b) the labour market for each socio-economic group at each 
production zone; c) the product market of each product type at each production zone. 

The above equilibrium conditions are formulated in the model as follows: 
A1.5.1 Product markets 
The market clearance condition in both zonal and regional product markets prescribes that in 
each of the 𝑗 = 1,… ,ℕ production zone, the production output of each industry should equal the 
total production demand plus net export. Let 𝑌𝑟𝑗|𝑠𝑛 be the intermediate demand for industry 𝑟 in 

zone 𝑗 for producing product 𝑠 in zone 𝑛 and Ξ𝑟𝑗 be the exogenous net export for industry 𝑟 in 

zone 𝑗. The zero excess demands in product markets require: 

∑ 𝐻𝑓𝑖𝑃𝑟𝑧|𝑓𝑖𝑗𝑧�̅�|𝑓𝑖𝑗
𝑓,𝑧

+ ∑ 𝑌𝑟𝑗|𝑠𝑛
𝑠,𝑛

+ Ξ𝑟𝑗 = 𝑋𝑟𝑗 (26) 

A1.5.2 Labour Markets 
In each of the 𝑗 = 1,… ,ℕ production zone, the annual labour demand in hourly term for each of 
the 𝑓 = 1,… , 𝐹 − 1 labour group must equal the working hours supplied by the respective labour 
group, net of the time for commuting, shopping and leisure. 

∑ 𝐿𝑟𝑓𝑗
𝑟

= ∑ 𝐻𝑓𝑖
𝑖

𝑃𝑓𝑖𝑗 (𝑁 − 2𝐷𝐺𝑓𝑖𝑗 − ∑ 𝑐𝑓𝑍𝑟𝑧|𝑓𝑖𝑗2𝐺𝑓𝑖𝑧
𝑟,𝑧

− 𝑙𝑓𝑖𝑗) (27) 

 
 
A1.5.3 Floorspace Markets 
We treat the zonal building floorspace as exogenous supply constraints in static equilibria, and 
update them through Recursive Dynamic models. The market clearance in floorspace markets 
requires that in static equilibrium, the zonal demand for each type of residential and business 
floorspace must equal the corresponding zonal supply constraint. 
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∑ 𝑏𝑚|𝑓𝑖𝑗
𝑓,𝑗

= �̂�𝑚𝑖 (28) 

∑ 𝐵𝑟𝑘𝑗
𝑟

= �̂�𝑘𝑗 (29) 

where �̂�𝑚𝑖 and �̂�𝑘𝑗 is the zonal supply constraint for housing and business floorspace, 

respectively. 
As a summary, the aforementioned equilibrium conditions define the aggregate behavioural rules 
of agents, and specify how they interact with each other in respective market. In fact, the 
equilibrium conditions constitute the economic foundation of general equilibrium models, and it 
is a theoretical necessity to satisfy such conditions in equilibrium analysis.  
 
A2 Model Algorithm 
In the previous section, we present the formal structure of the Spatial Equilibrium model. Given 
the exogenous stock constraints (building floorspace supply, transport infrastructure and non-
employed households), the aforementioned equations and variables complete the spatial general 
equilibrium of the model. Following the convention of spatial equilibrium models, we solve the 
static equilibrium in a sequential manner, which is specified in FIGURE 22. 
The solving algorithm for the Spatial Equilibrium model is as follows: 
STEP 0 (Initialization). Arbitrary exogenous vectors of rents (𝑹, 𝒓), wages (𝒘) serve as initial 
inputs. Given the guessed values, as well as the given transport conditions 𝑮 and 𝒈 and all 
parameters, the following sequentially arranged steps complete a single iteration of the SE 
model. 
STEP 1 (Production prices). The zero economic profit equation (7) is solved for the equilibrium 
production price 𝒑, given wages 𝐰 and business floorspace rents 𝐑. 
STEP 2 (Location choices). Residents make discrete location choice for sourcing goods & services 
with equation (18). Employed residents make joint location choices with Equation 21 or 23. 
STEP 3 (Outputs). Given the production price 𝒑 from STEP 1 and the location choices from STEP 
2, the final demand for production 𝑭 can be solved with the Marshallian demand function (12) 
and the zero-excess-demand equation (26). The total production demand 𝑿, including the 

intermediate demand, can be derived with the classical input-output solution 𝑿 = (𝑰 − 𝑨)−𝟏𝑭, 
where 𝑨 = [𝛾𝑟𝑠] is the matrix of input-output coefficients. 
STEP 4 (Rents). Given the production price 𝒑 from STEP 1 and the production outputs 𝑿 from 
STEP 3, the equilibrium rents for business floorspace 𝐑 can be solved with the floorspace 

demand function (3.5) subject to the stock constraints �̂�. Similarly, the housing rents 𝐫 are 
solved with the Marshallian or Hicksian demand function subject to the housing stock constraints 

�̂�. 
STEP 5 (Wages). Given the production price 𝒑 from STEP 1, the location choices from STEP 2, and 
the production outputs 𝑿 from STEP 3, the equilibrium wages 𝐰 can be solved with the labour 
market zero-excess-demand equation. 
STEP 6 (Updating). Gathering the results of STEP 1 to STEP 5, the algorithm has determined 
vectors 𝒑,𝒘,𝑹, 𝒓 conditional on transport matrices 𝑮 and 𝒈 and all exogenous variables, 
constraints and parameters. The algorithm will then check whether these updated prices and the 
associated quantities are converged and whether they simultaneously satisfy all equilibrium 
conditions to a desired level of accuracy that is discussed below. If not, then the next iteration 
is started by returning to STEP 1 with these updated vectors. If all equilibrium conditions and 
converging criteria are satisfied simultaneously, model iteration stops and writes output files. 
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Figure 22 Solving Algorithm for Spatial Equilibrium Model 
We define the level of converging accuracy by setting a maximum relative error condition. The 
Spatial Equilibrium model is considered converged in the nth iteration when the following 
inequality condition is satisfied simultaneously for all prices and quantities concerned: 

max
∀𝑖

(|
𝑥𝑖|𝑛 − 𝑥𝑖|𝑛−1

1
2 (𝑥𝑖|𝑛 + 𝑥𝑖|𝑛−1)

|) < 𝐼𝑇𝐸𝑅𝑇𝑂𝐿 (30) 

where vectors 𝑥𝑖|𝑛 include zonal prices 𝒑,𝒘,𝑹, 𝒓 and all the associated excess demands in 

iteration 𝑛, and 𝐼𝑇𝐸𝑅𝑇𝑂𝐿 is a user-specified maximum iteration tolerance. When the Spatial 
Equilibrium model is initiated with guesstimated starting values, large relative errors between 
iterations may occur. As the model approaches the equilibrium solution, the relative errors are 
expected to reduce gradually, yet not necessarily monotonically. 
In order to stabilize the equilibrating process and avoid the model from divergence, we need to 
define how the variables are updated between iterations. Let 𝐶𝑢𝑟𝑟𝑒𝑛𝑡(𝑋𝑛) be the variable value 
in iteration 𝑛 and 𝑁𝑒𝑤(𝑋𝑛+1) be the updated value from the solving algorithm for iteration 𝑛 +
1, we set: 

𝐶𝑢𝑟𝑟𝑒𝑛𝑡(𝑥𝑛+1) = 𝜛(𝑛)𝑁𝑒𝑤(𝑥𝑛) + [1 − 𝜛(𝑛)]𝐶𝑢𝑟𝑟𝑒𝑛𝑡(𝑥𝑛) (31) 
where coefficient 𝜛(𝑛) ∈ [0,1] is a monotonically increasing function with respect to the 
iteration number 𝑛 ∈ [1,𝑀𝐴𝑋𝐼𝑇𝐸𝑅]. The 𝜛(𝑛) function represents a smoothing technique for 
updating variables between iterations. A smaller step change of 𝜛(𝑛) helps to stabilize the 
equilibrating process but incurs more iterations. 
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A3 List of Variables in the Model 

INDICES FOR DIMENSIONS OF THE MODEL 

ℑ  Number of core zones 

℘  Number of peripheral zones 

ℕ = ℑ + ℘  Total number of model zones 

𝐹  Number of social-economic groups 

ℛ  Number of industry types 

ℵ1  Number of residential floorspace types 

ℵ2  Number of business floorspace types 

𝐷  Exogenous number of annual working days 

𝑁 = 24𝐷  Exogenous total annual time endowment 

VARIABLES IN SPATIAL EQUILIBRIUM MODEL 

𝑋𝑟𝑗  Aggregate production output of industry 𝑟 in zone 𝑗 

𝐸𝑟𝑗  Constant scalar representing any additional zonal effects on Total Factor 
Productivity (TFP) 

𝐴𝑟𝑗  An economic mass function for industry 𝑟 in zone 𝑗 that represents the 
agglomeration effects on TFP 

𝐾𝑟  Capital input for industry 𝑟 

𝐿𝑓𝑗  Labour input of type 𝑓 for industry 𝑟 in zone 𝑗 

𝐵𝑘𝑗  Business floorspace input of type 𝑘  for industry 𝑟 in zone 𝑗 

𝑌𝑟𝑠𝑗  Intermediate input of type 𝑠 for industry 𝑟 in zone 𝑗 

𝑀𝑗  Economic mass of zone 𝑗 

𝑆𝑖  Geographic area of zone 𝑗 

𝜒𝑓𝑖𝑗  Travel disutility function for socio-economic group type 𝑓 travelling from 𝑖 to 𝑗 

𝑝𝑟𝑗  Unit production price of industry 𝑟 in zone 𝑗 

𝜌  Real interest rate 

𝑤𝑓𝑗  Hourly wage of labour type 𝑓 in zone 𝑗 

𝑅𝑘𝑗  Average rent for business floorspace type 𝑘 in zone 𝑗 

𝑝𝑟𝑠|𝑗
∗   Average delivered price of intermediate input type 𝑠 for producing product type 𝑟 

in zone 𝑗 
𝑈𝑓𝑖𝑗  Observable utility of resident type 𝑓 living in zone 𝑖 and working in zone 𝑗 

𝑍𝑟𝑧|𝑓𝑖𝑗  Aggregate consumption volume for industry 𝑟 in zone 𝑧, given resident type 𝑓 living 

in zone 𝑖 and working in zone 𝑗 
𝑏𝑚|𝑓𝑖𝑗  Consumption volume for housing type 𝑚 in zone 𝑖, given resident type 𝑓 living in 

zone 𝑖 and working in zone 𝑗 
𝑙𝑓𝑖𝑗  Leisure time of resident type 𝑓 living in zone 𝑖 and working in zone 𝑗 

𝑔𝑓𝑖𝑧  Expected one-way monetary cost from 𝑖 to 𝑧 for customers type 𝑓 

𝐺𝑓𝑖𝑧  Expected one-way travel time from 𝑖 to 𝑧 for customers type 𝑓 

ℳ𝑓𝑖  Nonwage income of consumer type 𝑓 in zone 𝑖 

𝑟𝑚𝑖  Housing rent of type 𝑚 in zone 𝑖 

𝛥𝑓  Employment status of the consumer type 𝑓 (For all employed consumers 𝛥𝑓 = 1; 

otherwise 𝛥𝑓 = 0) 

𝑝𝑟𝑧|𝑓𝑖𝑗
∗   Full delivered price of a unit of goods & services type 𝑟 produced in zone 𝑧 

purchased by consumer type 𝑓 living in zone 𝑖 and working in zone 𝑗 
Ω𝑓𝑖𝑗  Full disposable income of the consumer type (𝑓𝑖𝑗) net of commuting costs 
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�̅�𝑟|𝑓𝑖𝑗  Aggregate demand for product type 𝑟 for consumer type (𝑓𝑖𝑗) 

�̅�𝑟|𝑓𝑖𝑗  Probability-weighted average price of product type 𝑟 faced by consumer type (𝑓𝑖𝑗) 

𝑁𝑓𝑖𝑗  Total annual labour working time for labour type (𝑓𝑖𝑗) 

𝑈𝑓𝑖𝑗  Price-based indirect utility of resident type 𝑓 living in zone 𝑖 and working in zone 𝑗 

𝑃𝑟𝑧|𝑓𝑖𝑗  Probability of obtaining product type 𝑟 from zone 𝑧 to consumer type 𝑓 living in 
zone 𝑖 (and working in zone 𝑗, if employed) 

𝑆𝑧  Size term that corrects for the bias introduced by the uneven sizes of zones in the 
model 

𝑃𝑓𝑖𝑗  Probability of employed resident type 𝑓 choosing to live in zone 𝑖 and work in zone 
𝑗 

𝜐𝑓𝑗  Employment location utility of zone 𝑗 for labour type 𝑓 

𝜐𝑓𝑖|𝑗  Residence location utility of zone 𝑖 for resident type 𝑓, given the chosen workplace 

𝑗 
𝑉𝑓|𝑗  Log-sum or inclusive utility representing the expected utility that employed 

worker type 𝑓 in zone 𝑗 would receive from all residence location choices 

�̅�𝑓𝑖  Average hourly wage of type-𝑓 employed residents living in zone 𝑖 

𝑑𝑓𝑖𝑗  Travel disutility after Box-Cox transformation for commuter type 𝑓 travelling from 

𝑖 to 𝑗 

�̂�𝑚𝑖  Stock constraints of housing floorspace type 𝑚 in zone 𝑖 

�̂�𝑘𝑖  Stock constraints of business floorspace type 𝑘 in zone 𝑗 

𝐻𝑓𝑖  Number of type 𝑓 residents in zone 𝑖 

Θ  Exogenous nonwage income from other sources 

Ξ𝑟𝑗  Exogenous net export for industry 𝑟 in zone 𝑗 

VARIABLES IN RECURSIVE DYNAMIC MODELS 

�̂�𝑘𝑖
𝑡+1  Zonal business floorspace stock of type 𝑘 at zone 𝑖 for period 𝑡 + 1 

�⃗� 𝑘
𝑡|𝑡+1

  Regional aggregate stock change of business floorspace type 𝑘 from period 𝑡 to 𝑡 +
1 

𝑉𝑖|𝐵  Locational utility of zone 𝑗 for business floorspace growth 

�̂�𝑚𝑖
𝑡+1  Zonal housing floorspace stock of type 𝑚 at zone 𝑖 for period 𝑡 + 1 

�⃗� 𝑚
𝑡|𝑡+1

  Regional aggregate stock change of housing floorspace type 𝑚 from period 𝑡 to 𝑡 +
1 

𝑉𝑖|𝑏  Locational utility of zone 𝑗 for housing floorspace growth 

�̅�𝑖
𝑡  Zonal average business floorspace rent at zone 𝑖 for period 𝑡 

�̅�𝐷
𝑡   Municipal/provincial average business floorspace rents at 𝐷 for period 𝑡 

𝒟𝑖
𝑡  Zonal building floorspace density at zone 𝑖 for period 𝑡 

ℶi|B  Dummy variable indicating zonal policy trend for business floorspace growth 

�̅�𝑖
𝑡  Zonal average housing floorspace rent at zone 𝑖 for period 𝑡 

�̅�𝐷
𝑡   Municipal/provincial average housing floorspace rents at 𝐷 for period 𝑡 

ℶi|b  Dummy variable indicating zonal positive policy trend for housing floorspace 
growth 

ℷi|b  Dummy variable indicating zonal negative policy trend for housing floorspace 
growth 

𝐻𝑖|𝐹
𝑡+1  Zonal number of non-employed residents in zone 𝑖 at period 𝑡 + 1 

�⃗⃗� 𝐹
𝑡|𝑡+1

  Regional aggregate change of non-employed households from period 𝑡 to 𝑡 + 1 

𝐽𝑓𝑗
𝑡   Number of labour type 𝑓 in zone 𝑗 for period 𝑡 
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List of Parameters in the Model 

PARAMETERS IN SPATIAL EQUILIBRIUM MODEL 

𝛿𝑟  Labour cost share 

𝜇𝑟  Business floorspace cost share 

𝜈𝑟  Capital cost share 

𝛾𝑟𝑛  Intermediate cost share 

𝜁𝑟  Elasticity of substitution for business floorspace varieties 

𝜃𝑟  Elasticity of substitution for labour varieties 

𝜎𝑓  Elasticity of substitution for housing varieties 

𝑎𝑓|𝜅  Coefficient for determining the input-specific parameters for labour 
varieties 

𝜅𝑟𝑓𝑗  Input-specific parameters for labour varieties 

𝑎𝑓|𝚤  Coefficient for determining the input-specific parameters for housing 
varieties 

𝜉𝑟𝑓𝑧  Input-specific parameters for goods & services varieties 

𝚤𝑚𝑓𝑖  Input-specific parameters for housing varieties 

𝐸𝑗  Additional total factor productivity multiplier 

𝜋  Economic mass effects on productivity 

𝑐𝑓  Cost for delivering a unit of local services as percentage of commuting trip 
cost 

𝛼𝑓  Utility coefficient for goods & services 

𝛽𝑓  Utility coefficient for housing 

𝛾𝑓  Utility coefficient for leisure time 

𝑎𝑓|𝑑  Log-linear travel cost function parameter 

𝜍𝑓  Decay coefficient for value of time (non-commuting travels) 

𝜆𝑓|𝑟  Dispersion parameter for sourcing goods & services 

𝜆𝑓|𝐽  Dispersion parameter for employment location choices 

𝜆𝑓|𝐼  Dispersion parameter for residence location choices 

𝜓𝑖𝑧, 𝜓𝑓𝑖|𝑗 , 𝜓𝑓𝑗  Observable non-monetary barriers for spatial interaction 

𝐸𝑓𝑧  Residual attractiveness for sourcing goods & services 

𝐸𝑓𝑗, 𝐸𝑓𝑖|𝑗 Residual attractiveness for residence-employment location choices 
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